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Figure 2.  
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Figure 3.  
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Abstract 9 

Recent advances in remote sensing and land data assimilation purport to improve the quality of 10 

antecedent soil moisture information available for operational hydrologic forecasting. We 11 

objectively validate this claim by calculating the strength of the relationship between storm-scale 12 

runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-13 

storm surface soil moisture estimates from a range of surface soil moisture data products. Results 14 

demonstrate that both satellite-based, L-band microwave radiometry and the application of land 15 

data assimilation techniques have significantly improved the utility of surface soil moisture data 16 

sets for forecasting stream flow response to future rainfall events.  17 

 18 

1. Introduction 19 

Anticipating the capacity of the land surface to infiltrate future rainfall is an important source of 20 

predictability in short-term operational stream flow forecasts [Silvestro et al., 2014; Massari et 21 

al. 2014]. Dynamic changes in this capacity are due primarily to variations in soil moisture 22 

content, which determine the infiltration capacity of the soil column [Western and Grayson, 23 



1998]. As a result, there has been considerable interest in using remotely-sensed surface soil 24 

moisture retrievals for improved monitoring of pre-storm soil moisture conditions within 25 

hydrologic basins [Massari et al., 2015a]. However, these retrievals suffer from a number of 26 

well-known weaknesses including: 1) coarse spatial resolution (typically > 30 km), 2) shallow 27 

vertical support within the soil column (typically 1-5 cm), and 3) reduced accuracy under dense 28 

vegetation.  29 

 30 

Therefore, robust evaluation techniques are needed to objectively measure the benefits of new 31 

soil moisture products for hydrologic forecasting. One common approach has been to compare 32 

hydrologic model performance before and after the assimilation of a remotely-sensed soil 33 

moisture product. However, a review of these approaches reveals a wide disparity in conclusions 34 

regarding the value of soil moisture assimilation for forecasting stream flow [Crow and Ryu, 35 

2008; Massari et al., 2015b; Lievens et al., 2015]. This lack of consistency arises, at least in part, 36 

from significant sensitivity to the structure and calibration of the particular hydrologic model 37 

applied in the assimilation system [Chen et al., 2009; Zhuo and Han, 2016; Massari et al., 38 

2015a]. Therefore, evaluation results are non-robust in that they are affected by the accuracy of 39 

the assumed parametric relationship connecting precipitation, runoff and soil moisture imbedded 40 

within these models. In order to remove this sensitivity, and provide a more robust basis for 41 

cross-comparing a wide range of soil moisture products, Crow et al. [2005] developed a 42 

simplified evaluation approach based on temporally sampling the Spearman rank correlation 43 

between pre-storm soil moisture and (subsequent) storm-scale runoff ratios – defined as the ratio 44 

of total storm-scale stream flow to total storm-scale rainfall accumulation (both in dimensions of 45 

length) over a ~1 week period following a triggering precipitation event.  46 



 47 

There has been considerable recent progress in the development of operational soil moisture 48 

products. These advances include the 2009 launch of the European Space Agency Soil Moisture 49 

and Ocean Salinity (SMOS) mission [Kerr et al., 2010] and the 2015 launch of the National 50 

Aeronautics and Space Administration Soil Moisture Active Passive (SMAP) mission [Entekhabi 51 

et al., 2010], both dedicated to measuring global surface soil moisture using L-band microwave 52 

radiometry, as well as the development of operational, value-added soil moisture data products 53 

based on the assimilation of L-band observations into a land surface model, such as the SMAP 54 

Level 4 Surface and Root-zone Soil Moisture (SMAP_L4) product [Reichle et al., 2016]. Our 55 

goal here is to update Crow et al. [2005] to consider these new soil moisture products and 56 

provide an objective description of their relative value for hydrologic forecasting.       57 

 58 

2. Study basins and data 59 

This study focuses on 16 medium-scale (2,000-10,000 km2) hydrologic basins located within the 60 

south-central United States (Figure 1). This particular region has experienced an unusually large 61 

number of flash flooding events during the past two years (Figure 1) and is therefore a natural 62 

choice for an analysis aimed at hydrologic predictability. In addition, land cover conditions in the 63 

region are generally amenable to the remote sensing of soil moisture (i.e., there is infrequent 64 

snow cover, generally modest topographic relief, and relatively isolated forest coverage). The 65 

selection of specific basins within this region was based on a screening analysis performed by 66 

the Model Parameterization Experiment [Duan et al., 2006] which identified suitable basins with 67 

adequate rain gauge density and lacking significant amounts of anthropogenic impoundment or 68 

diversion of stream flow.  69 



Individual basin characteristics are summarized in Table 1. Moving from west to east, these 70 

basins exhibit progressively higher mean annual rainfall and runoff ratios (Table 1). Western 71 

basins are generally characterized by rangeland, grassland and winter wheat land cover types 72 

with relatively low biomass. More easterly basins contain larger amounts of upland forest cover 73 

and summer agriculture in low-lying areas.  74 

For each basin, daily rainfall accumulations are derived from the spatial and temporal 75 

aggregation of gauge-corrected, 4-km Stage IV precipitation [Lin, 2011] data (to a daily time 76 

scale and a basin-average spatial scale) and daily stream flow values based on United States 77 

Geological Survey (USGS) stream gauge measurements located at each basin outlet [USGS, 78 

2016]. Rainfall accumulation and stream flow daily totals are computed for 0 to 24 LST (UTC-6 79 

hours). Antecedent soil moisture estimates are obtained from each of the sources described 80 

below.  81 

2.1 AMSR2 82 

AMSR2 soil moisture retrievals were based on the application of the Land Parameter Retrieval 83 

Model (LPRM) to the ~35-km resolution X-band channel of the Japanese Space Agency 84 

Advanced Microwave Scanning Radiometer-2 (AMSR2) satellite sensor to produce a 0.25° 85 

resolution product [Vrije Universiteit Amsterdam and NASA GSFC, 2014; Parinussa et al., 86 

2015]. Owing to known problems with LPRM retrievals obtained at the 1:30 PM AMSR2 87 

ascending overpass [Lei et al., 2015], only retrievals from the 1:30 AM descending overpass 88 

were utilized. In addition, retrievals with uncertainties greater than 0.40 m3m-3 were masked. 89 

These masked retrievals comprise approximately 11% of all AMSR2 retrievals in the study 90 

region. The AMSR2 sensor also measures in a (lower frequency) C-band channel which is 91 



suitable for retrieving soil moisture; however, this channel is known to be contaminated by radio 92 

frequency interference over the United States. 93 

2.2 SMOS L2  94 

The SMOS mission [Kerr et al., 2010] measures L-band (1.400-1.427 GHz) microwave 95 

brightness temperature at ~45-km spatial resolution with equatorial ascending/descending 96 

overpasses at approximately 6 am/pm local solar time and a 3-day revisit period at the equator. It 97 

began scientific data collection in January 2010. The SMOS Level 2 (L2) soil moisture product 98 

utilized here is based on application of SMOS processor version 6.2.0 to retrieve soil moisture on 99 

an equal-area ISEA4h9 15-km grid [Kerr et al., 2012]. SMOS_L2 retrievals obtained from both 100 

ascending (6 pm) and descending (6 am) orbits were combined into a single time series. 101 

Normalized retrieval error was determined by dividing the SMOS data quality index value 102 

(provided with each soil moisture value) by the absolute SMOS_L2 soil moisture estimate. All 103 

retrievals with normalized error greater than 0.50 [-] were masked from the analysis. These 104 

masked retrievals comprise approximately 7% of all SMOS_L2 retrievals in the study region.  105 

2.3 SMAP L2 106 

Launched in January 2015, SMAP began continuous science data acquisition on March 31, 2015 107 

with its L-band (1.41 GHz) radiometer [Entekhabi at al., 2010]. The SMAP Enhanced Level 2 108 

(L2) Passive Soil Moisture product is generated by applying the Backus-Gilbert optimal 109 

interpolation technique to the original SMAP brightness temperature product and then the SMAP 110 

baseline soil moisture retrieval algorithm [O’Neill et al., 2016]. This version of the SMAP_L2 111 

product was released in December 2016 and is posted on version 2 of the global cylindrical 9 km 112 

Equal-Area Scalable Earth (EASEv2) grid [Brodzik et al., 2012] with a native resolution of ~36 113 

km. Retrievals obtained from both ascending (6 pm) and descending (6 am) orbits were 114 



combined into a single time series.  Masking was applied to remove retrievals during periods of 115 

snow cover or frozen soil.  116 

2.4 SMAP L4 and NRv4 117 

The SMAP_L4 algorithm is an ensemble-based assimilation system built around the NASA 118 

Goddard Earth Observing System version 5 (GEOS-5) Catchment land surface model [Koster et 119 

al., 2000]. Its primary drivers are SMAP brightness temperature observations and surface 120 

meteorological forcing data from the GEOS-5 atmospheric assimilation system, corrected with 121 

precipitation observations [Reichle and Liu, 2014]. The algorithm interpolates and extrapolates 122 

information from the SMAP observations in time and in space based on the relative uncertainties 123 

of the model estimates and the observations. SMAP_L4 data include 3-hourly soil moisture 124 

estimates for the “surface” (0-5 cm) and “root zone” (0-100 cm) layers on the 9-km EASEv2 grid 125 

[Reichle et al., 2016]. L4 data are available within 2-3 days from the time of observation. The 126 

unpublished Nature Run, version 4 (NRv4) data are also generated with the SMAP_L4 system, 127 

but configured for a single ensemble member (no perturbations) and without the assimilation of 128 

SMAP brightness temperature observations. As a result, NRv4 provides a model-only reference 129 

to assess the relative benefit of assimilating SMAP brightness temperature observations.  130 

 131 

3. Approach 132 

3.1. Storm event definition 133 

A storm “event” is defined as the 6-day period following a triggering daily precipitation 134 

accumulation amount that exceeds a pre-specified threshold.  By design, these triggering events 135 

always fall on the first day of this event period, and, to avoid the confounding impact of over-136 

lapping storm events, we discard events for which another storm exceeding the threshold occurs 137 



within the event period. Likewise, all events must be preceded by at least one day with a daily 138 

precipitation amount below the storm accumulation threshold. All daily soil moisture products 139 

are 0 to 24 LST (UTC-6 hours) averages, and pre-storm antecedent soil moisture is defined as 140 

the minimum value of daily soil moisture obtained during the two-day period prior to the onset 141 

of a storm event. In all cases, at least 25% spatial coverage is required to sample a basin-average 142 

soil moisture value.    143 

 144 

Daily stream flow observations (in native flow rate dimensions [L3/T]) are converted into daily 145 

depths [L/T] via normalization by basin area. Daily rainfall and stream flow accumulations are 146 

then temporally summed for each storm event and a storm-scale runoff-ratio is calculated for 147 

each individual event. For a range of daily precipitation storm event thresholds, the Spearman 148 

rank coefficient of variation (R2
s) between antecedent soil moisture and storm scale runoff-ratio 149 

is sampled in time for each basin and each soil moisture product. Rank correlation is used 150 

because the relationship between antecedent soil moisture and runoff ratio is potentially 151 

nonlinear. Owing to the relatively short length of the SMAP data record to date, sampled R2
s 152 

values for individual basins are subject to large random sampling errors, and we currently lack 153 

the statistical power to evaluate soil moisture product performance on a basin-by-basin basis. 154 

Therefore, we focus only on spatially-averaged values of R2
s ( ) acquired across all 16 basins 155 

between 31 March 2015 and 31 December 2016. 156 

 157 

No attempt was made to isolate storm flow within the overall stream flow time series. Therefore, 158 

it is possible for base flow to contribute a non-insignificant fraction of observed storm-scale 159 

stream flow response (especially for low storm precipitation thresholds within relatively humid 160 



study basins). However, it should be stressed that the presence of base flow does not undermine 161 

the interpretation of   as a metric for stream flow forecasting skill. Instead, it simply indicates 162 

that a fraction of this forecasting skill is due to the temporal persistence of elevated base flow 163 

levels (associated with high soil moisture values) rather than the prediction of land surface 164 

response to future precipitation. 165 

3.2. Uncertainty description 166 

Uncertainty intervals for R2
s values sampled within individual basins are obtained using a 5000-167 

member boot-strapping approach and then merged to estimate uncertainty intervals for sampled 168 

. Based on the averaged spatial correlation sampled between SMAP_L4 basin-averaged, 169 

surface soil moisture values (presumed to be the most accurate representation of soil moisture 170 

available), and the approach of Bretherton et al. [1999], the 16 basins in Figure 1 contain only 171 

7.4 spatially-independent samples. In addition, since   values for each soil moisture product 172 

are sampled from a highly-overlapping set of storm events, uncertainty intervals attached to 173 

individual products provide a potentially misleading description of the statistical significance of 174 

pair-wise differences (since the cross-correlation of sampling errors ensures that the variance of 175 

sampling error in pair-wise differences is less than the sum of the sampling error variances for 176 

each product individually). Therefore, we further assess the sampling uncertainty in relative 177 

comparisons based on the boot-strapping of pair-wise  differences between all soil moisture 178 

products - considering only storm events whose antecedent conditions are captured by both 179 

members of the soil moisture product pair.  180 

 181 

4. Results 182 



Based on sampling across all storm events and all basins, Figure 2 illustrates the range in 183 

observed rainfall runoff ratio and its variation as a function of both storm-scale precipitation 184 

accumulation (Figure 2a) and pre-storm surface soil moisture (acquired from the SMAP_L4 185 

product; Figure 2b). As expected, a slight increase in runoff ratio is seen with increased storm 186 

size in Figure 2a. However, even for relatively large storm events (with > 100 mm of total 187 

rainfall accumulation), a wide range of potential storm-scale runoff ratios is observed (Figure 188 

2a). Runoff ratio exhibits a much stronger overall relationship with pre-storm surface soil 189 

moisture levels (Figure 2b; provided again by SMAP_L4) - demonstrating the contribution of 190 

antecedent soil moisture conditions to hydrologic predictability. 191 

 192 

Figure 3 plots  for precipitation storm thresholds ranging from 5 to 35 mm/day and pre-storm 193 

soil moisture products. Recall that   is the spatial average of R2
s sampled individually within 194 

each of our 16 study basins. Numerical labels in Figure 3 reflect the number of storm events 195 

sampled to acquire plotted values of . The error bars in Figure 3 capture 95% sampling 196 

confidence intervals obtained from the boot-strapping approach described above. However, for 197 

reasons discussed above, the pair-wise hypothesis tests presented in Table are used as basis of 198 

formal conclusions regarding the statistical significance of sampled  differences between 199 

products.  200 

 201 

Higher values of  in Figure 3 are consistent with an enhanced ability to detect variations in soil 202 

moisture which subsequently impact stream flow response to future precipitation. Among the 203 

remote sensing products (open symbols in Figure 3), SMAP_L2 demonstrates the best  results, 204 

followed by the SMOS_L2 product, and then the X-band AMSR2 retrievals. For the lower 205 



accumulation thresholds (5, 15 and 25 mm/day), both SMOS_L2 and SMAP_L2 differences 206 

versus AMSR2 are statistically-significant (two-tailed, 95% confidence; Table 2). Restricting 207 

SMAP_L2 and SMOS_L2 retrievals to only the 6 AM or 6 PM overpasses, to better mimic the 208 

use of only the 1:30 AM overpass for AMSR2 retrievals, had only a minimal impact on their 209 

sampled  results. Therefore, Figure 3 is consistent with the expectation that L-band remote 210 

sensing products are more valuable than older products acquired from higher-frequency 211 

microwave channels (e.g., X-band). In addition, SMAP_L2 significantly outperforms AMSR2 212 

for the highest event threshold and SMOS_L2 for the lower two thresholds (5 and 15 mm/day). 213 

However, the  differences between SMOS_L2 and SMAP_L2 become non-significant for the 214 

15 and 25 mm/day thresholds (Table 2). 215 

 216 

Despite its relative superiority versus other remote-sensing products, the SMAP_L2 product still 217 

lags behind surface soil moisture estimates obtained from the NRv4 modeling system (Figure 3). 218 

Nevertheless, improvement relative to NRv4 is seen when SMAP brightness temperature 219 

observations (which form the basis of the SMAP_L2 retrievals) are assimilated into the NRv4 220 

modeling system to produce the SMAP_L4 product. However, the difference between the 221 

SMAP_L4 and NRv4   falls short of 95% confidence (ranging from between 84% and 91% 222 

confidence depending on storm event threshold size - see Table 2). Relatively little difference is 223 

found in Figure 3 when switching between the use of surface and “root-zone” SMAP_L4 and 224 

NRv4 soil moisture products (not shown). However, this may be simply due to the tendency for 225 

the Catchment land surface model (used to generate both products) to exhibit relatively strong 226 

vertical coupling between its surface and root-zone soil moisture predictions [Kumar et al., 227 

2009].  228 



 229 

In addition to soil moisture products, Figure 3 also examines the use of pre-storm USGS daily 230 

stream flow data as a predictor of storm-scale runoff ratios. If available, antecedent stream flow 231 

measurements are generally assumed to be a valuable predictor of future stream flow magnitudes 232 

and commonly assimilated into operational hydrologic models – see e.g., Liu et al. [2016]. 233 

However, for precipitation accumulation thresholds of 15 mm/day and above, the SMAP_L4 234 

product outperforms daily USGS stream flow measurements as a leading predictor of storm-scale 235 

runoff ratio - at a significance level which reaches 93% confidence for an event threshold of 35 236 

mm/day (see Table 2).  237 

 238 

As noted above, several choices underpin our approach for defining discrete rainfall events 239 

within a continuous daily rainfall record. In order to determine the impact of these choices, 240 

alternative versions of Figure 3 were generated for the cases of: 1) maximum storm lengths of 5 241 

and 7 days (versus the default of 6 days), 2) the use of prior day soil moisture to define 242 

antecedent conditions (versus the default of using the minimum soil moisture estimated in the 243 

two-day period prior to the storm events), and 3) not masking storm events which are interrupted 244 

by the onset of another event (versus the default of masking these events). None of these tested 245 

variations changed the qualitative relationships summarized in Figure 3. Another concern is the 246 

impact of including snow events on the sampling of  for the NRv4, SMAP_L4 and USGS 247 

Stream flow results plotted in Figure 3. However, sub-setting these datasets to include only days 248 

with SMAP_L2 retrievals (which have passed a frozen soil and snow cover mask during 249 

processing) had no discernible impact on results. Alternative versions of Figure 3 for all cases 250 

listed above are shown in the supporting material (Figures S1, S2, S3, S4 and S5).  251 



 252 

5. Summary and Conclusions 253 

Within the range of basins studied here, expectations concerning storm-scale rainfall runoff 254 

ratios are strongly conditioned by appropriate knowledge of pre-storm soil moisture conditions 255 

(Figure 2b). In addition, the development and application of both L-band radiometry and 256 

advanced data assimilation systems have significantly improved the quality of soil moisture 257 

information available for this purpose (Figure 3, Table 2). In particular, the assimilation of 258 

SMAP L-band brightness temperature data in the SMAP_L4 system results in a surface soil 259 

moisture product with the highest hydrologic forecasting skill observed to date, and the 260 

SMAP_L4 product provides at least as much predictive skill as pre-storm measurements of 261 

stream flow  (Figure 3). The relative advantages of the SMAP_L4 product grow as the analysis is 262 

focused on larger storm events (see the right-hand-side of Figure 3). It should, however, be 263 

stressed that this conclusion is based on a single regional study in an area that is relatively well-264 

suited to the remote retrieval of soil moisture. Follow-on work over a wider range of conditions 265 

is needed.  266 

 267 

In closing, it should be noted that the successful application of satellite-based soil moisture 268 

products for hydrologic forecasting also depends on their near-real time availability. SMAP_L2 269 

products are typically available within 24 hours from the time of observation. SMAP_L4 data are 270 

available within 2-3 days because of the latency incurred by the use of gauge-based precipitation 271 

inputs. However, several options exist for shortening the latency of SMAP_L2 and L4 products, 272 

including the short-term forecasting of SMAP_L2 products based on SMAP-derived loss 273 



functions [Koster et al., 2017] and the production of lower-latency SMAP_L4 products using 274 

GEOS-5 forcing inputs without the benefit of gauge-based precipitation inputs.  275 

 276 
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 402 

Table 1. Attributes of study basins in Figure 1. 403 

 404 

Basin 
Number 

USGS 
Station 

No. 
USGS Station Name 

Basin 
Size 

(km2) 

Annual 
P 

(mm) 

Runoff
Ratio 
Q/P 

1 07144780 Ninnescah River AB Cheney Re, KS 2,049 768 0.08 
2 07144200 Arkansas River at Valley Center, KS 3,402 842 0.11 
3 07152000 Chikaskia River near Blackwell, OK 4,891 896 0.19 
4 07243500 Deep Fork near Beggs, OK 5,210 945 0.15 
5 07147800 Walnut River at Winfield, KS 4,855 980 0.31 
6 07177500 Bird Creek Near Sperry, OK 2,360 1025 0.23 
7 06908000 Blackwater River at Blue Lick, MS 2,924 1140 0.29 
8 07196500 Illinois River near Tahlequah, OK 2,492 1175 0.29 
9 07019000 Meramec River near Eureka, MO 9,766 1187 0.28 
10 07052500 James River at Galena, MO 2,568 1255 0.31 
11 07186000 Spring River near Wace, MO 2,980 1258 0.27 
12 07056000 Buffalo River near St. Joe, AR 2,148 1238 0.37 
13 06933500 Gasconade River at Jerome, MO 7,356 1293 0.24 
14 07067000 Current River at Van Buren, MO 4,351 1309 0.31 
15 07068000 Current River at Doniphan, MO 5,323 1314 0.36 
16 07290000 Big Black River NR Bovina, MS 7,227 1368 0.37 

 405 

  406 



Table 2. The statistical significance of  differences sampled between all potential product 407 

pairs for a range of daily accumulation storm thresholds. Second row indicates  values taken 408 

from Figure 3. Arrows point to the product with the highest  for each pairing. Significance 409 

values are for a two-tailed hypothesis test.  410 

 411 
5 mm/day 412 

 AMSR2 SMOS_L2 SMAP_L2 NRv4 SMAP_L4 USGS SF 

 0.18 0.29 0.42 0.51 0.55 0.62 

AMSR2  ↑ 96% ↑ >99% ↑ >99% ↑ >99% ↑ >99% 
SMOS_L2   ↑ >99% ↑ >99% ↑ >99% ↑ >99% 
SMAP_L2    ↑ 96% ↑ >99% ↑ >99% 

NRv4     ↑ 92% ↑ 99% 
SMAP_L4      ↑ 95% 
 413 
 414 

15 mm/day 415 
 AMSR2 SMOS_L2 SMAP_L2 NRv4 SMAP_L4 USGS SF 

 0.15 0.30 0.42 0.54 0.59 0.61 

AMSR2  ↑ 98% ↑ >99% ↑ >99% ↑ >99% ↑ >99% 
SMOS_L2   ↑ 99% ↑ >99% ↑ >99% ↑ >99% 
SMAP_L2    ↑ 97% ↑ >99% ↑ >99% 

NRv4     ↑ 86% ↑ 90% 
SMAP_L4      ↑ 70% 

 416 
 417 

25 mm/day 418 
 AMSR2 SMOS_L2 SMAP_L2 NRv4 SMAP_L4 USGS SF 

 0.13 0.25 0.35 0.57 0.63 0.55 

AMSR2  ↑ 96% ↑ >99% ↑ >99% ↑ >99% ↑ >99% 
SMOS_L2   ↑ 91% ↑ >99% ↑ >99% ↑ >99% 
SMAP_L2    ↑ >99% ↑ >99% ↑ 99% 

NRv4     ↑ 84% ← 61% 
SMAP_L4      ← 86% 

 419 
 420 

35 mm/day 421 
 AMSR2 SMOS_L2 SMAP_L2 NRv4 SMAP_L4 USGS SF 

 0.17 0.29 0.37 0.51 0.60 0.47 

AMSR2  ↑ 78% ↑ 95% ↑ 99% ↑ >99% ↑ >99% 
SMOS_L2   ↑ 71% ↑ 97% ↑ >99% ↑ 95% 
SMAP_L2    ↑ 87% ↑ 98% ↑ 81% 

NRv4     ↑ 91% ← 65% 
SMAP_L4      ← 93% 

 422 

 423 
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      441 

 442 

Figure 2. Box-plots (i.e., 5th, 25th, 50th, 75th and 95th percentiles) of storm-scale runoff ratio 443 

versus: a) total storm rainfall accumulation depths [mm] and b) pre-storm surface soil moisture 444 

[m3m-3] for storm events observed across all basins in Figure 1. In part b), pre-storm surface soil 445 

moisture is based on SMAP_L4 surface soil moisture estimates and events with accumulation 446 

depths less than 10 mm are excluded. Numbers represent total storm events described by each 447 

box-plot. Runoff ratios greater than one likely reflect measurement errors in estimates of storm 448 

total rainfall and/or stream flow used to determine the storm runoff ratio. 449 

 450 

 451 

 452 

 453 



 454 

   455 

Figure 3. Spearman rank coefficient of variation   (between pre-storm soil moisture and 456 

storm-scale runoff ratio) versus storm event precipitation accumulation threshold for a range of 457 

soil moisture products (plus antecedent USGS stream flow). Error bars represent 95% sampling 458 

confidence.  is sampled in time within each basin and averaged across all 16 study basins 459 

(Figure 1). Numerical labels reflect the number of total storm events sampled to acquire . 460 

Symbols lacking individual numerical labels have complete temporal coverage and are based on 461 

the storm numbers indicated by the larger black numerals. 462 
 463 
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